The effect of starch and starch-bioactive glass composite microparticles on the adhesion and expression of the osteoblastic phenotype of a bone cell line.

نویسندگان

  • Gabriela A Silva
  • Olga P Coutinho
  • Paul Ducheyne
  • Irving M Shapiro
  • Rui L Reis
چکیده

There is a clear need for the development of microparticles that can be used simultaneously as carriers of stem/progenitor cells and as release systems for bioactive agents, such as growth factors or differentiation agents. In addition, when thinking on bone-tissue-engineering applications, it would be very useful if these microparticles are biodegradable and could be made to be bioactive. Microparticles with all those characteristics could be cultured together with adherent cells in appropriate bioreactors to form in vitro constructs that can then be used in tissue-engineering therapies. In this work, we have characterized the response of MC3T3-E1 pre-osteoblast cells to starch-based microparticles. We evaluated the adhesion, proliferation, expression of osteoblastic markers and mineralization of cells cultured at their surface. The results clearly show that MC3T3-E1 pre-osteoblast cells adhere to the surface of both polymeric and composite starch-based microparticles and express the typical osteoblastic marker genes. Furthermore, the cells were found to mineralize the extracellular matrix (ECM) during the culture period. The obtained results indicate that starch-based microparticles, known already to be biodegradable, bioactive and able to be used as carriers for controlled release applications, can simultaneously be used as carriers for cells. Consequently, they can be used as templates for forming hybrid constructs aiming to be applied in bone-tissue-engineering applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stem Cell Bone Differentiation on Polyol Lactic Acid Composite Nanoparticles Containing 45S5 Bioactive Glass Nanoparticles

Abstract Background and Objectives Now day, using of stem cells and nanoparticles in the differentiation of stem cells is considered as a therapeutic approach. The purpose of this study was to synthesize and characterize nanocomposite polyacrylic polycarboxylic acid containing nanoparticles of biologically active glass 45S5 crushed and assessment effect of this composite on the propagation and...

متن کامل

Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles.

The aim of the development of composite materials is to combine the most desired properties of two or more materials. In this work, the biodegradable character, good controlled-release properties, and natural origin of starch-based biomaterials are combined with the bioactive and bone-bonding properties of bioactive glass (BG). Novel, bioactive composite starch-BG microparticles were synthesize...

متن کامل

Evaluation of Biopolymers Effect on In vitro Biocompatibility Property of Nano Hydroxyl Apatite Composites

In this work, we report the effect of biopolymers (starch and gelatin) on in vitro biocompatibility property of nano hydroxyapatite (nHAp) composites. Cell culture and MTT assays were performed for in vitro biocompatibility. They show that nHAp can affect the proliferation of cells and the nHAp-starch and nHAP-gelatin biocomposites have no negative effect on the cell morphology, viability and p...

متن کامل

Evaluation of Biopolymers Effect on In vitro Biocompatibility Property of Nano Hydroxyl Apatite Composites

In this work, we report the effect of biopolymers (starch and gelatin) on in vitro biocompatibility property of nano hydroxyapatite (nHAp) composites. Cell culture and MTT assays were performed for in vitro biocompatibility. They show that nHAp can affect the proliferation of cells and the nHAp-starch and nHAP-gelatin biocomposites have no negative effect on the cell morphology, viability and p...

متن کامل

Fabrication, Characterization and Osteoblast Response of Cobalt-Based Alloy/Nano Bioactive Glass Composites

IIn this work, cobalt-based alloy/ nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. The scanning electron microscopy images of two- step sintered composites revealed a relatively dense microstructure the density of which decreased with the increase in the NBG amount. M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 28 2  شماره 

صفحات  -

تاریخ انتشار 2007